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Last Time

* Exceptions
* Multi-cycle operations
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Todax
 Chapter 2.1

* Introduction of ILP Techniques
* Dependencies and Hazards

— True (data) dependence
— Name dependence
— Control dependence

e Carefully Ignoring Control Dependence
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Instruction-Level Parallelism

* Pipelining overlaps the execution of instructions
— This overlap is Instruction-Level Parallelism (ILP)!

 WEe'll consider techniques to increase ILP
— What limits ILP; how much we can expect to extract
— How to best exploit the available ILP

* Two main techniques

— Hardware (market winner: Intel Pentium series)
— Software (special niche markets, Intel Itanium, DSPs)
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PiEeIine CPI

Pipeline CPI = Ideal pipeline CPI + Structural Stalls + Data Hazard Stalls + Control Stalls

* |deal pipeline CPI
— Maximum performance of the implementation

e Structural hazards
— HW cannot support this combination of instructions

e Data hazards
— Instruction consumes a result not yet produced

* Control hazards
— Caused by time req’d for branch and jump resolution
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ILP within Basic Blocks

e Basic Block (BB) ILP is quite small

* BB: a straight-line code sequence with
— no branches in except to the entry and

— no branches out except at the exit

* Average dynamic branch frequency 15% to 25%
— 4 to 7 instructions execute between a pair of branches

* |Instructions in BB likely to depend on each other

* To obtain substantial performance enhancements,
we must exploit ILP across multiple basic blocks

 What are the implications of this?
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Safelx Maximizing ILP

* Program order

— Order of executed instructions would execute in, if

e Executed sequentially, and
* One at a time, as

* Determined by original source program
« HW/SW goal
— Exploit parallelism by preserving program order, but

— Only do so where it affects the result of the program
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I\/Ia'|or ILP Technigues

Forwarding Potential data hazard stalls

Delayed branches and simple branch scheduling Control hazard stalls

Dynamic scheduling Data hazard stalls

Branch prediction Control stalls

Issuing multiple instructions per cycle Ideal CPI

Speculation Data and control stalls

Dynamic memory disambiguation Data hazard stalls involving memory
Loop unrolling Control hazard stalls

Basic compiler pipeline scheduling Data hazard stalls

Compiler dependence analysis and software pipelining Ideal CPl and data hazard stalls
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LooE-LeveI Parallelism gLLPZ

* Exploit parallelism among iterations of a loop
for (i1=1; 1i<=1000; 1i=i+1)
x[1] = x[1] + y[1];

* Vector execution is one way

— Graphics, DSP, media apps.

— Execute the same instructions on multiple data

simultaneously

* If not vector, then either

— dynamic exploitation via branch prediction or

— static exploitation via loop unrolling
Turn LLP into ILP
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Parallel and DeEendent Instructions

* |nstructions are parallel if they can execute
simultaneously, regardless of pipeline depth

* Dependent instructions
— Are not parallel
— Must be executed in order
— But may still be partially overlapped

 There are three types of dependence
— Data dependence (true data dependence)
— Name dependence
— Control dependence
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DeEendence and Hazards

* Dependencies are a property of programs

* Dependency = potential for a hazard
— Actual hazard, length of stall, are properties of
pipeline organization
* Data dependencies
— Indicate the possibility of a hazard
— Determine the order for calculating results
— Set an upper bound on available parallelism
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Data Degendence

* InstrJis data dependent on instr [ if
— J tries to read an operand before /| writes it, or

<::I: add rl,r2,r3
J: sub r4,rl1l,r3
— Jis data dependent on instr K which is dependent on |

 “True Dependence” (compiler term)
— Can cause Read After Write (RAW) hazards
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Name Degendence H1: Anti-deEendence

* Name dependence

— Two Instructions use same register or memory
location (name)

— No actual flow of data between the instructions

* Anti-dependence
— J writes an operand before / reads it

I: sub r4,rl,r3
J: add rl,r2,r3
K: mul ré6,rl,r7

e Can cause Write After Read (WAR) hazards
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Name Dependence #2: Output dependence

e Jwrites an operand before | writes it

I: sub rl,r4,r3
J: add rl,r2,r3
K: mul r6,rl,r7

e Can cause Write After Write (WAW) hazards

* |In the case of naming dependencies: change the
name, remove the dependence!
— Register renaming for register naming dependencies
— Compiler (static) or by HW (dynamic)

* Detecting naming dependencies is harder for
memory addresses
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Control DeEendence

* Every instruction (except in the very first basic block) is
control dependent on some set of branches

* In general, these control dependencies must be
preserved to preserve program order

if pl {
Sl;

}

if p2 {
S2;

}

— S1is control dependent on p1l
— S2 is control dependent on p2 but not on p1
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Control DeEendence Ignored

e Control dependence need not be preserved
— as long as program correctness is preserved

* E.g., executing instructions
— that should not be executed, or
— in and order that differs from program order, and
— thereby violating control dependencies

* Two properties critical to program correctness
— Exception behavior
— Data flow
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Preserving ExceEtion Behavior

* Any changes in instruction execution order must not
change how exceptions are raised in program

— Alternatively, no new exceptions (more relaxed)

 Example:
DADDU R2,R3,R4
BEQZ R2,L1
LW R1,0 (R2)
Ll:

e Can we move LW before BEQZ?

— No data dependence, only control dependence

— Possibility of memory protection exception in the LW
* handled by speculation (to come later)
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Preserving Data Flow

* Data flow: movement of values among instructions that
produce results and those that consume them

* |nvolves both control and data dependences
— branches make flow dynamic,
— need to determine which instruction supplies data

 Example 1:

DADDU R1,R2,R3
BEQZ R4, L
DSUBU R1,R5,R0
L ..
OR R7,R1,R8 <— cannot move to before branch

* Does OR depend on DADDU or DSUBU? Both!
— Determined using data flow analysis (compiler technique)
— Preserving data dependence alone is not enough, in this case
— Must preserve data flow (both data and control dependence)!
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Safelx Violating Control DeEendencies

* Sometimes, control dependencies can be violated
without affecting data flow

 Example 2:

DADDU R1,R2,R3
BEQZ R12, skip
DSUBU R4,R5,R6
DADDU R5,R4,R09
skip: OR R7,R8, RO

* |f R4 is unused after skip, we can move DSUBU to
before BEQZ
— This is called (software) speculation, and is dependent on
— liveness analysis (compiler technique)
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Summarx

* |LP is small within basic blocks
— We need techniques that safely expose ILP across BBs

 Dependence and Hazards
— Data dependence: true dependence!
— Name dependence: can be removed
— Control dependence: can (sometimes) be ignored

* Change code, but preserve program correctness
— Don’t need to preserve program order, just
— Exception behavior, and
— Data flow
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Next Time

* Basic Compiler Techniques for Exposing ILP
— Chapter 2.2

* On Friday, Branch prediction
— Chapter 2.3
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