ECSE 425 Lecture 10:
Instruction-Level Parallelism

H&P Chapter 2

© 2011 Patterson, Gross, Hayward, Arbel, Vu, Meyer
Textbook figures © 2007 Elsevier Science

Last Time

* Exceptions
* Multi-cycle operations

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 10 Vu, Meyer; © 2007 Elsevier Science

Todax
 Chapter 2.1

* Introduction of ILP Techniques
* Dependencies and Hazards

— True (data) dependence
— Name dependence
— Control dependence

e Carefully Ignoring Control Dependence

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 10 Vu, Meyer; © 2007 Elsevier Science

Instruction-Level Parallelism

* Pipelining overlaps the execution of instructions
— This overlap is Instruction-Level Parallelism (ILP)!

 WEe'll consider techniques to increase ILP
— What limits ILP; how much we can expect to extract
— How to best exploit the available ILP

* Two main techniques

— Hardware (market winner: Intel Pentium series)
— Software (special niche markets, Intel Itanium, DSPs)

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 10 Vu, Meyer; © 2007 Elsevier Science

PiEeIine CPI

Pipeline CPI = Ideal pipeline CPI + Structural Stalls + Data Hazard Stalls + Control Stalls

* |deal pipeline CPI
— Maximum performance of the implementation

e Structural hazards
— HW cannot support this combination of instructions

e Data hazards
— Instruction consumes a result not yet produced

* Control hazards
— Caused by time req’d for branch and jump resolution

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 10 Vu, Meyer; © 2007 Elsevier Science

ILP within Basic Blocks

e Basic Block (BB) ILP is quite small

* BB: a straight-line code sequence with
— no branches in except to the entry and

— no branches out except at the exit

* Average dynamic branch frequency 15% to 25%
— 4 to 7 instructions execute between a pair of branches

* |Instructions in BB likely to depend on each other

* To obtain substantial performance enhancements,
we must exploit ILP across multiple basic blocks

 What are the implications of this?

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 10 Vu, Meyer; © 2007 Elsevier Science

Safelx Maximizing ILP

* Program order

— Order of executed instructions would execute in, if

e Executed sequentially, and
* One at a time, as

* Determined by original source program
« HW/SW goal
— Exploit parallelism by preserving program order, but

— Only do so where it affects the result of the program

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 10 Vu, Meyer; © 2007 Elsevier Science

I\/Ia'|or ILP Technigues

Forwarding Potential data hazard stalls

Delayed branches and simple branch scheduling Control hazard stalls

Dynamic scheduling Data hazard stalls

Branch prediction Control stalls

Issuing multiple instructions per cycle Ideal CPI

Speculation Data and control stalls

Dynamic memory disambiguation Data hazard stalls involving memory
Loop unrolling Control hazard stalls

Basic compiler pipeline scheduling Data hazard stalls

Compiler dependence analysis and software pipelining Ideal CPl and data hazard stalls

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 10 Vu, Meyer; © 2007 Elsevier Science

LooE-LeveI Parallelism gLLPZ

* Exploit parallelism among iterations of a loop
for (i1=1; 1i<=1000; 1i=i+1)
x[1] = x[1] + y[1];

* Vector execution is one way

— Graphics, DSP, media apps.

— Execute the same instructions on multiple data

simultaneously

* If not vector, then either

— dynamic exploitation via branch prediction or

— static exploitation via loop unrolling
Turn LLP into ILP

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 10 Vu, Meyer; © 2007 Elsevier Science

Parallel and DeEendent Instructions

* |nstructions are parallel if they can execute
simultaneously, regardless of pipeline depth

* Dependent instructions
— Are not parallel
— Must be executed in order
— But may still be partially overlapped

 There are three types of dependence
— Data dependence (true data dependence)
— Name dependence
— Control dependence

© 2011 Patterson, Gross, Hayward, Arbel,

Vu, Meyer; © 2007 Elsevier Science 10

ECSE 425, Fall 2011, Lecture 10

DeEendence and Hazards

* Dependencies are a property of programs

* Dependency = potential for a hazard
— Actual hazard, length of stall, are properties of
pipeline organization
* Data dependencies
— Indicate the possibility of a hazard
— Determine the order for calculating results
— Set an upper bound on available parallelism

© 2011 Patterson, Gross, Hayward, Arbel,
ECSE 425, Fall 2011, Lecture 10 Vu, Meyer; © 2007 Elsevier Science H

Data Degendence

* InstrJis data dependent on instr [if
— J tries to read an operand before /| writes it, or

<::I: add rl,r2,r3
J: sub r4,rl1l,r3
— Jis data dependent on instr K which is dependent on |

 “True Dependence” (compiler term)
— Can cause Read After Write (RAW) hazards

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 10 Vu, Meyer; © 2007 Elsevier Science

12

Name Degendence H1: Anti-deEendence

* Name dependence

— Two Instructions use same register or memory
location (name)

— No actual flow of data between the instructions

* Anti-dependence
— J writes an operand before / reads it

I: sub r4,rl,r3
J: add rl,r2,r3
K: mul ré6,rl,r7

e Can cause Write After Read (WAR) hazards

© 2011 Patterson, Gross, Hayward, Arbel,

Vu, Meyer; © 2007 Elsevier Science 3

ECSE 425, Fall 2011, Lecture 10

Name Dependence #2: Output dependence

e Jwrites an operand before | writes it

I: sub rl,r4,r3
J: add rl,r2,r3
K: mul r6,rl,r7

e Can cause Write After Write (WAW) hazards

* |In the case of naming dependencies: change the
name, remove the dependence!
— Register renaming for register naming dependencies
— Compiler (static) or by HW (dynamic)

* Detecting naming dependencies is harder for
memory addresses

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 10 Vu, Meyer; © 2007 Elsevier Science

14

Control DeEendence

* Every instruction (except in the very first basic block) is
control dependent on some set of branches

* In general, these control dependencies must be
preserved to preserve program order

if pl {
Sl;

}

if p2 {
S2;

}

— S1is control dependent on p1l
— S2 is control dependent on p2 but not on p1

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 10 Vu, Meyer; © 2007 Elsevier Science

15

Control DeEendence Ignored

e Control dependence need not be preserved
— as long as program correctness is preserved

* E.g., executing instructions
— that should not be executed, or
— in and order that differs from program order, and
— thereby violating control dependencies

* Two properties critical to program correctness
— Exception behavior
— Data flow

© 2011 Patterson, Gross, Hayward, Arbel,

Vu, Meyer; © 2007 Elsevier Science 16

ECSE 425, Fall 2011, Lecture 10

Preserving ExceEtion Behavior

* Any changes in instruction execution order must not
change how exceptions are raised in program

— Alternatively, no new exceptions (more relaxed)

 Example:
DADDU R2,R3,R4
BEQZ R2,L1
LW R1,0 (R2)
Ll:

e Can we move LW before BEQZ?

— No data dependence, only control dependence

— Possibility of memory protection exception in the LW
* handled by speculation (to come later)

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 10 Vu, Meyer; © 2007 Elsevier Science

17

Preserving Data Flow

* Data flow: movement of values among instructions that
produce results and those that consume them

* |nvolves both control and data dependences
— branches make flow dynamic,
— need to determine which instruction supplies data

 Example 1:

DADDU R1,R2,R3
BEQZ R4, L
DSUBU R1,R5,R0
L ..
OR R7,R1,R8 <— cannot move to before branch

* Does OR depend on DADDU or DSUBU? Both!
— Determined using data flow analysis (compiler technique)
— Preserving data dependence alone is not enough, in this case
— Must preserve data flow (both data and control dependence)!

© 2011 Patterson, Gross, Hayward, Arbel,

Vu, Meyer; © 2007 Elsevier Science 18

ECSE 425, Fall 2011, Lecture 10

Safelx Violating Control DeEendencies

* Sometimes, control dependencies can be violated
without affecting data flow

 Example 2:

DADDU R1,R2,R3
BEQZ R12, skip
DSUBU R4,R5,R6
DADDU R5,R4,R09
skip: OR R7,R8, RO

* |f R4 is unused after skip, we can move DSUBU to
before BEQZ
— This is called (software) speculation, and is dependent on
— liveness analysis (compiler technique)

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 10 Vu, Meyer; © 2007 Elsevier Science

19

Summarx

* |LP is small within basic blocks
— We need techniques that safely expose ILP across BBs

 Dependence and Hazards
— Data dependence: true dependence!
— Name dependence: can be removed
— Control dependence: can (sometimes) be ignored

* Change code, but preserve program correctness
— Don’t need to preserve program order, just
— Exception behavior, and
— Data flow

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 10 Vu, Meyer; © 2007 Elsevier Science

20

Next Time

* Basic Compiler Techniques for Exposing ILP
— Chapter 2.2

* On Friday, Branch prediction
— Chapter 2.3

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 10 Vu, Meyer; © 2007 Elsevier Science

21

